2016-03-30 8 views
1

2_fullyconnected.ipynb udacity割り当てに従って作成したモデルに画像を渡そうとしています。Tensorflowのモデルに画像を渡した後に分類が行われない

私がモデルを作成したコードを以下に示します。

# In[1]: 

from __future__ import print_function 
import numpy as np 
import tensorflow as tf 
from six.moves import cPickle as pickle 
from six.moves import range 


# First reload the data we generated in `1_notmnist.ipynb`. 

# In[2]: 

pickle_file = 'notMNIST.pickle' 

with open(pickle_file, 'rb') as f: 
    save = pickle.load(f) 
    train_dataset = save['train_dataset'] 
    train_labels = save['train_labels'] 
    valid_dataset = save['valid_dataset'] 
    valid_labels = save['valid_labels'] 
    test_dataset = save['test_dataset'] 
    test_labels = save['test_labels'] 
    del save # hint to help gc free up memory 
    print('Training set', train_dataset.shape, train_labels.shape) 
    print('Validation set', valid_dataset.shape, valid_labels.shape) 
    print('Test set', test_dataset.shape, test_labels.shape) 
    print(train_dataset[0]) 
    print(train_labels[0]) 


# Reformat into a shape that's more adapted to the models we're going to train: 
# - data as a flat matrix, 
# - labels as float 1-hot encodings. 

# In[3]: 

image_size = 28 
num_labels = 10 

def reformat(dataset, labels): 
    print(type(dataset)) 
    #print(dataset[0]) 
    dataset = dataset.reshape((-1, image_size * image_size)).astype(np.float32) 
    # Map 0 to [1.0, 0.0, 0.0 ...], 1 to [0.0, 1.0, 0.0 ...] 
    labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32) 
    return dataset, labels 
train_dataset, train_labels = reformat(train_dataset, train_labels) 
valid_dataset, valid_labels = reformat(valid_dataset, valid_labels) 
test_dataset, test_labels = reformat(test_dataset, test_labels) 
print('Training set', train_dataset.shape, train_labels.shape) 
print('Validation set', valid_dataset.shape, valid_labels.shape) 
print('Test set', test_dataset.shape, test_labels.shape) 


#stochastic gradient descent training 

# In[7]: 

batch_size = 128 

graph = tf.Graph() 
with graph.as_default(): 

    # Input data. For the training data, we use a placeholder that will be fed 
    # at run time with a training minibatch. 
    tf_train_dataset = tf.placeholder(tf.float32, 
            shape=(batch_size, image_size * image_size)) 
    tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels)) 
    tf_valid_dataset = tf.constant(valid_dataset) 
    tf_test_dataset = tf.constant(test_dataset) 

    # Variables. 
    weights = tf.Variable(
    tf.truncated_normal([image_size * image_size, num_labels]),name = "weights") 
    biases = tf.Variable(tf.zeros([num_labels]),name ="biases") 

    # Training computation. 
    logits = tf.matmul(tf_train_dataset, weights) + biases 
    loss = tf.reduce_mean(
    tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels)) 

    # Optimizer. 
    optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss) 

    # Predictions for the training, validation, and test data. 
    train_prediction = tf.nn.softmax(logits) 
    valid_prediction = tf.nn.softmax(
    tf.matmul(tf_valid_dataset, weights) + biases) 
    test_prediction = tf.nn.softmax(tf.matmul(tf_test_dataset, weights) + biases) 


# In[9]: 

def accuracy(predictions, labels): 
    return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1)) 
     /predictions.shape[0]) 


# Let's run it: 

# In[10]: 

num_steps = 3001 

with tf.Session(graph=graph) as session: 
    tf.initialize_all_variables().run() 
    print("Initialized") 
    for step in range(num_steps): 
    # Pick an offset within the training data, which has been randomized. 
    # Note: we could use better randomization across epochs. 
    offset = (step * batch_size) % (train_labels.shape[0] - batch_size) 
    # Generate a minibatch. 
    batch_data = train_dataset[offset:(offset + batch_size), :] 
    batch_labels = train_labels[offset:(offset + batch_size), :] 
    # Prepare a dictionary telling the session where to feed the minibatch. 
    # The key of the dictionary is the placeholder node of the graph to be fed, 
    # and the value is the numpy array to feed to it. 
    feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels} 
    _, l, predictions = session.run(
     [optimizer, loss, train_prediction], feed_dict=feed_dict) 
    if (step % 500 == 0): 
     print("Minibatch loss at step %d: %f" % (step, l)) 
     print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels)) 
     print("Validation accuracy: %.1f%%" % accuracy(
     valid_prediction.eval(), valid_labels)) 
    print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels)) 
    save_path = tf.train.Saver().save(session, "/tmp/important_model/model.ckpt") 
    print("Model saved in file: %s" % save_path) 

モデルは/ tmp/important_model /に保存されます。次のようにそのフォルダの

ツリー構造は次のとおりです。

important_model/ 
|-- checkpoint 
|-- model.ckpt 
`-- model.ckpt.meta 

今、私は私のモデルを復元して、分類のためのモデルに画像を渡すためにしようとしていた中で新しいファイルを作成しています。

私はモデルを復元するために必要な新しいpythonファイルでグラフを作成しました(私は間違っている可能性があります。間違っていると私を修正してください)。

# In[16]: 

# These are all the modules we'll be using later. Make sure you can import them 
# before proceeding further. 
from __future__ import print_function 
import numpy as np 
import tensorflow as tf 
from six.moves import cPickle as pickle 
from six.moves import range 
from scipy import ndimage 


# In[17]: 

image_size = 28 
num_labels = 10 


# In[25]: 

# With gradient descent training, even this much data is prohibitive. 
# Subset the training data for faster turnaround. 
#train_subset = 1000 

batch_size = 1 

graph = tf.Graph() 
with graph.as_default(): 

    # Variables. 
    # These are the parameters that we are going to be training. The weight 
    # matrix will be initialized using random valued following a (truncated) 
    # normal distribution. The biases get initialized to zero. 
    # Variables. 
    #saver = tf.train.Saver() 
    weights = tf.Variable(
    tf.truncated_normal([image_size * image_size, num_labels]),name = "weights") 
    biases = tf.Variable(tf.zeros([num_labels]),name ="biases") 

    tf_valid_dataset = tf.placeholder(tf.float32, 
            shape=(batch_size, image_size * image_size)) 
    valid_prediction = tf.nn.softmax(
    tf.matmul(tf_valid_dataset, weights) + biases) 


# In[26]: 

def accuracy(predictions, labels): 
    return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1)) 
     /predictions.shape[0]) 


# In[34]: 

pixel_depth = 255 
image_data = (ndimage.imread('notMNIST_small/A/QXJyaWJhQXJyaWJhU3RkLm90Zg==.png').astype(float) - 
        pixel_depth/2)/pixel_depth 
print(image_data.shape) 
resized_data = image_data.reshape((-1,784)) 
print(resized_data.shape) 

with tf.Session(graph=graph) as session: 
    tf.train.Saver().restore(session, "/tmp/important_model/model.ckpt") 
    print("Model restored.") 
    session.run(valid_prediction,feed_dict={tf_valid_dataset:resized_data}) 

私が来ている出力notebooktheこのipythonで[34] LNを実行しています:私は、与えられた画像が属するが、ドン」も5つの予想ラベルを伝えたい

(28, 28) 
(1, 784) 
Model restored 

上記のプログラムはエラーを表示しませんが、どちらの出力も表示されません。私はtf.nn.softmax関数で画像を渡したが、残念なことに何も取得していないので、画像の確率がすべてのクラスにあると思った。

ご協力いただければ幸いです。

session.run(valid_prediction,feed_dict={tf_valid_dataset:resized_data}) 

この方法の結果はnumpyのである:

答えて

2

コード内の次の行は、(この場合は単一の画像)データセット内の各画像のための可能な出力ラベルを横切る確率分布を計算します形状の配列(1, 10)。確率を表示するには、あなたは、単に配列印刷することができます。

result = session.run(valid_prediction,feed_dict={tf_valid_dataset:resized_data}) 
print(result) 

を、あなたのイメージのためのトップK予測を得ることができる多くの方法があります。グラフを定義するときにTensorFlowのtf.nn.top_k()演算子を使用するのが最も簡単な方法の1つです。

valid_prediction = tf.nn.softmax(tf.matmul(tf_valid_dataset, weights) + biases) 
top_5_labels = tf.nn.top_k(valid_prediction, k=5) 

# ... 
result = session.run(top_5_labels, feed_dict={tf_valid_dataset: resized_data}) 
print(result) 
+0

ありがとうございます。それは今働いている。なぜ私たちはモデルを復元しているpythonファイルで再びグラフを定義する必要があるのですか? 。私はまだそれを得ていない。 – kkk

+1

'tf.MetaGraphDef'(これもチェックポイントコードによって生成されます)を使ってこれを自動的に実行する実験的なサポートがありますが、まだプライムタイムの準備が整っていない可能性があります。しかし、物事は絶えず改善しています! – mrry

関連する問題